Security News
Fluent Assertions Faces Backlash After Abandoning Open Source Licensing
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
@travetto/di
Advanced tools
Install: @travetto/di
npm install @travetto/di
# or
yarn add @travetto/di
Dependency injection is a framework primitive. When used in conjunction with automatic file scanning, it provides for handling of application dependency wiring. Due to the nature of Typescript and type erasure of interfaces, dependency injection only supports class
es as a type signifier. The primary goal of dependency injection is to allow for separation of concerns of object creation and it's usage.
The @Injectable and @InjectableFactory decorators provide the registration of dependencies. Dependency declaration revolves around exposing class
es and subtypes thereof to provide necessary functionality. Additionally, the framework will utilize dependencies to satisfy contracts with various implementation.
Code: Example Injectable
import { Injectable } from '@travetto/di';
@Injectable()
class CustomService {
async coolOperation() {
// Do work!
}
}
When declaring a dependency, you can also provide a token to allow for multiple instances of the dependency to be defined. This can be used in many situations:
Code: Example Injectable with multiple targets
import { Injectable, Inject } from '@travetto/di';
@Injectable()
class CustomService {
async coolOperation() {
// do work!
}
}
const CUSTOM2 = Symbol.for('di-custom2');
@Injectable({ target: CustomService, qualifier: CUSTOM2 })
class CustomService2 extends CustomService {
override async coolOperation() {
await super.coolOperation();
// Do some additional work
}
}
class Consumer {
@Inject(CUSTOM2) // Pull in specific service
service: CustomService;
}
As you can see, the target
field is also set, which indicates to the dependency registration process what class
the injectable is compatible with. Additionally, when using abstract
classes, the parent class
is always considered as a valid candidate type.
Code: Example Injectable with target via abstract class
import { Injectable } from '@travetto/di';
abstract class BaseService {
abstract work(): Promise<void>;
}
@Injectable()
class SpecificService extends BaseService {
async work() {
// Do some additional work
}
}
In this scenario, SpecificService
is a valid candidate for BaseService
due to the abstract inheritance. Sometimes, you may want to provide a slight variation to a dependency without extending a class. To this end, the @InjectableFactory decorator denotes a static
class method that produces an @Injectable.
Code: Example InjectableFactory
import { InjectableFactory } from '@travetto/di';
// Not injectable by default
class CoolService {
}
class Config {
@InjectableFactory()
static initService() {
return new CoolService();
}
}
Given the static
method initService
, the function will be provided as a valid candidate for CoolService
. Instead of calling the constructor of the type directly, this function will work as a factory for producing the injectable.
Code: Example Conditional Dependency
import { GlobalEnv } from '@travetto/base';
import { Inject, Injectable } from '@travetto/di';
@Injectable({ enabled: !GlobalEnv.devMode })
class ProductionLogger {
async log() {
console.log('This will only run in production');
}
}
@Injectable()
class RuntimeService {
@Inject()
logger?: ProductionLogger;
action(): void {
// Only injected when available, in prod
this.logger?.log();
// Do work
}
}
In this example, the enabled flag is specified in relationship to the deployment environment. When coupled with optional properties, and optional chaining, allows for seamless inclusion of optional dependencies at runtime.
Note: Other modules are able to provide aliases to @Injectable that also provide additional functionality. For example, the Configuration module @Config or the RESTful API module @Controller decorator registers the associated class as an injectable element.
Once all of your necessary dependencies are defined, now is the time to provide those @Injectable instances to your code. There are three primary methods for injection:
The @Inject decorator, which denotes a desire to inject a value directly. These will be set post construction.
Code: Example Injectable with dependencies as Inject fields
import { Injectable, Inject } from '@travetto/di';
import { DependentService } from './dep';
@Injectable()
class CustomService {
@Inject()
private dependentService: DependentService;
async coolOperation() {
await this.dependentService.doWork();
}
}
The @Injectable constructor params, which will be provided as the instance is being constructed.
Code: Example Injectable with dependencies in constructor
import { Injectable } from '@travetto/di';
import { DependentService } from './dep';
@Injectable()
class CustomService {
constructor(private dependentService: DependentService) { }
async coolOperation() {
await this.dependentService.doWork();
}
}
Via @InjectableFactory params, which are comparable to constructor params
Code: Example InjectableFactory with parameters as dependencies
import { InjectableFactory } from '@travetto/di';
import { DependentService, CustomService } from './dep';
class Config {
@InjectableFactory()
static initService(dependentService: DependentService) {
return new CustomService(dependentService);
}
}
If you are building modules for others to consume, often times it is possible to end up with multiple implementations for the same class.
Code: Example Multiple Candidate Types
import { Injectable, Inject } from '@travetto/di';
export abstract class Contract {
}
@Injectable()
class SimpleContract extends Contract { }
@Injectable()
export class ComplexContract extends Contract { }
@Injectable()
class ContractConsumer {
// Will default to SimpleContract if nothing else registered
@Inject()
contract: Contract;
}
By default, if there is only one candidate without qualification, then that candidate will be used. If multiple candidates are found, then the injection system will bail. To overcome this the end user will need to specify which candidate type should be considered primary
:
Code: Example Multiple Candidate Types
import { InjectableFactory } from '@travetto/di';
import { Contract, ComplexContract } from './injectable-multiple-default';
class Config {
// Complex will be marked as the available Contract
@InjectableFactory({ primary: true })
static getContract(complex: ComplexContract): Contract {
return complex;
}
}
The module is built around the framework's management of class registration, and being able to decorate the code with @Injectable decorators. There may also be a desire to leverage external code and pull it into the dependency injection framework. This could easily be achieved using a wrapper class that is owned by the framework.
It is also possible to directly reference external types, and they will be converted into unique symbols. These symbols cannot be used manually, but can be leveraged using @Inject decorators.
Code: Example External Dependencies
import { EventEmitter } from 'events';
import { Writable } from 'stream';
import { Inject, Injectable, InjectableFactory } from '@travetto/di';
class Source {
@InjectableFactory()
static emitter(): EventEmitter {
return new EventEmitter();
}
@InjectableFactory(Symbol.for('custom-1'))
static writable(): Writable {
return {} as Writable;
}
@InjectableFactory(Symbol.for('custom-2'))
static writableAlt(): Writable {
return {} as Writable;
}
}
@Injectable()
class Service {
@Inject()
emitter: EventEmitter;
@Inject(Symbol.for('custom-2'))
writable: Writable;
}
Some times you will need to lookup a dependency dynamically, or you want to control the injection process at a more granular level. To achieve that you will need to directly access the DependencyRegistry. The registry allows for requesting a dependency by class reference:
Code: Example of Manual Lookup
import { Injectable, DependencyRegistry } from '@travetto/di';
@Injectable()
class Complex { }
class ManualLookup {
async invoke() {
const complex = await DependencyRegistry.getInstance(Complex);
return complex;
}
}
Additionally, support for interfaces (over class inheritance) is provided, but requires binding the interface to a concrete class as the interface does not exist at runtime.
Code: Example Interface Injection
import { DependencyRegistry, Inject, Injectable, InjectableFactory } from '@travetto/di';
class TargetConcrete { }
/**
* @concrete .:TargetConcrete
*/
export interface ServiceContract {
deleteUser(userId: string): Promise<void>;
}
class MyCustomService implements ServiceContract {
async deleteUser(userId: string): Promise<void> {
// Do something
}
}
@Injectable()
class SpecificService {
@Inject()
service: ServiceContract;
}
class ManualInvocationOfInterface {
@InjectableFactory()
static getCustomService(): Promise<ServiceContract> {
return DependencyRegistry.getInstance<ServiceContract>(TargetConcrete);
}
}
FAQs
Dependency registration/management and injection support.
The npm package @travetto/di receives a total of 614 weekly downloads. As such, @travetto/di popularity was classified as not popular.
We found that @travetto/di demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Research
Security News
Socket researchers uncover the risks of a malicious Python package targeting Discord developers.
Security News
The UK is proposing a bold ban on ransomware payments by public entities to disrupt cybercrime, protect critical services, and lead global cybersecurity efforts.